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C O M P L E X  D E F O R M A T I O N  

O F  A N  O R T H O T R O P I C  MATERIAL 

B. A. Rychkov UDC 539.37 

An a t tempt  is made to describe the mechanism of deformation anisotropy of an orthotropic material 
under proportional and complex loadings in terms of the concept of sliding by means of generalization of the 
solid body model of [1, 2], which reflects a change in the strength properties of the material through a shear 
strength caused by slidings over the areas of basic tangential stresses. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  At present, mostly variants of the plasticity theory of an orthotropic 
material with isotropic strengthening are being developed; one of these has been proposed by Hill [3] for sheet 
materials. This theory uses the Mises classical quadratic yield condition [4], which is in reasonably good 
agreement with experiments on loading along the orthotropy axes. However, this condition is "not easily 
adaptable in practice" [5]. For this reason, Hill began to develop its generalization using a uniform yield 
function of arbitrary (fractional) degree. Other generalizations of the yield condition, which take into account, 
for example, the influence of the first invariant of the stress tensor, are also available [6, 7]. 

The approach proposed in this work is based on experimentally observed different relations between 
components of the tensor of plastic deformation in its initial phase for different types of stresses. The case of 
biaxial tension where the basic directions of the stress tensor coincide with the symmetry axes of the initial 
anisotropy is considered. 

Leonov et al. established [8], that  under proportional loadings similar to uniaxial and biaxial tensions, 
an orthotropic material subjected to plastic defotmation first undergoes pure shear strain in one of the areas of 
basic tangential stresses. Consequently, if the shear mechanism of plastic deformation of polycrystals is taken 
as a basis, it is necessary to specify normal yield stresses (for example, the yield stress in uniaxial tension) 
by assigning them indices indicating the area and direction of sliding in it caused by the given stress. The 
averaged influence of basic tangential stresses on the process of sliding over a specific area can be taken into 
account by introducing an equivalent tangential stress [3], which is expressed in terms of the basic stresses: 

3( o+po+ao)[ + (1.11 
Here H0, F0, Go are the parameters of the initial anisotropy (at H0 = F0 = Go Tequiv reduces to the octahedral 
tangential stress). 

Assuming that the parameters H0, F0, and Go are determined by the yield stresses in three basic 
directions, we suggest that  the yield condition in the plane be taken in the form 

vii = Bij - krcq~i,,, Bij ,  k = const ( i , j  = z ,~ , r ) ,  (1.2) 

where rij are the yield stresses in the areas :of basic tangential stresses; Bij,  k are the material parameters; 
the indices z, ~2, and r show the direction along the tube axis tangential to its generatrix and along the 
tube radius, respectively, for tension with internal pressure of a thin-walled tube (the main case of loading 
considered herein),  

The model of strengthening of an orthotropic material discussed below is primarily related to the 
y properties of zirconium alloy E-110. Its yield stress of axial tension [8] is (az)z ~ ~ 10.9.81 MPa (the second 
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index z, ~p in the notation of the yield stress indicates the area of basic tans~',.tial stress, over which the first 
slidings occur). In tension in the transverse direction, (o'~)~z ,~ 32 - 9.81 MPa (at a 0.1% tolerance for the 
largest basic deformation). Even these two yield stresses give an indication of significant initial anisotropy. It 
is reflected by condition (t.2) as follows. 

Taking the yield stress for k~ = 4/3 (ka = ~rz/~r~), which is the stress az, as the initial da ta  (along with 
the indicated uniaxial stresses), and taking into account that for this stressed state (as in the case k~, = oc) 
the initial values of the plastic deformation components also satisfy the relation 

Fz ~ - F ~ ,  (1.3) 

we find that at the tolerance taken for Fz 

(c~Y)z~ ~ 14.8.9.81 MPa at k~, = 4/3. (1.4) 

Using the yield stresses at ka = ~ and 4/3, in view of (1.2), we obtain 

k = 1.4, Bz~ = 13.16.9.81 MPa. (1.5) 

In contrast to the basic tangential stresses "rij, the "areas of sliding" will be denoted by Tij, as in the 
model of an initially-isotropic material [9]. From the axial tension diagram for the material being considered 
it follows that the area Tz~ is "brought into action" after the area Tzr at tension crz ~ 16.5.9.81 MPa, i.e., the 

Y = is equal to the indicated value. This makes it possible to compute the constant yield stress (~rz)zr for k~ cxD 
B~r by using the value parameter k (1.5): 

B~r = 21.72 �9 9.81 MPa. 

The calculations, in accordance with condition (1.2), showed that, for the parameters of the material 
found in this way, slidings occur simultaneously over the areas Tz~ and Tzr at a stress close to equal biaxial 
tension (k~, = 0.986). Indeed, a deviation from equality (1.3) such that Fz > IF~I is observed in the experiment 
for this case in the small vicinity of the conditional yield stress. 

The other parameters of the material model introduced and the corresponding yield stresses over 
the slidings areas at different stresses are determined in a similar manner. The calculated data and the 
corresponding experimental data confirm that the yield condition (t.2) for the value (1.5) of the parameter k 
is suitable for the zirconium alloy. Its distinctive feature is an increase in the biaxial strength in comparison 
to uniaxial tension. This phenomenon was observed, for example, for a titanium alloy in [10]. 

It turned out that, for 0 ~< ka ~< oo, the yield stresses of the titanium alloy [10] correspond to condition 
(1.2) if the area Tz~ is "working" for oe t> k~, /> 1.014 and the area T~z is working for 1.014 /> k~ /> 0. The 

Y Y o-Y yield stresses (~r~)~z = 87.2-9.81 MPa (k,, = 0), (az)z ~ = 90.7.9.81 MPa (k,, = co), ( ~o)~z = 112.5.9.81 MPa 
(ka = 0.5) were used as initial data for determining the material parameters (k, Bz~,, and B ~ ) .  The calculated 
yield curve is shown in Fig. 1 by a solid line, and the experimental data, by a dotted line. The dashed and 
dash-dotted lines represent the yield curves constructed [10] by using the Hill theory (and the Mises-Hill 
corresponding yield condition) with the following assumptions. 

Transverse isotropy of the material [10] is assumed, and the relation between the increments of the 
deformation components at axial tension, d~/der = R, is used for determining the parameters of the initial 
anisotropy. The dashed line is constructed from the initial yield stresses for k~, = 0 and 0.5 at R = 1.7, and 
the dash-dotted line from of the data for k~, = 0 and 1 at R = 2.6. 

Thus, also for the titanium alloy, yield condition (1.2) agrees with experimental data better than the 
Mises-Hill condition. 

It should be noted that the Mises-Hill yield condition for a transversally isotropic material in the case 
of biaxial stress is transformed (at H0 = Go) into the form 

= 2H0(   - + ( g 0  + = 1. 

The yield condition below, which is similar to condition (1.2) and is "intermediate" between the criteria of 
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Mises-Hill and of Tresca, was proposed [11] for such a material: 

+ (1 - = 1 (o < 1). 

Here 7/is a material parameter determined from the experiment; 

r = ~fF(cr,,a~,); t , z -  l a k -  crll ( k =  1,2, l =  2,3, k 5r l). 

(1.6)  

A comparison of expressions (1.2) and (1.6) shows that the latter imposes a more severe limitation 
on the coefficients of the linear dependence between the basic tangential stresses and the equivalent stress. 
Condition (1.6) gives practically the same result as condition (1.2) only for materials with insignificant initial 
anisotropy and a slight increase in biaxial strength (for example, for aluminum alloy D16T [12] and magnesium 
alloy MA2 [13]). Condition (1.6) is not satisfactory for zirconium and titanium alloys, as is clear from the 
determination of the parameter ~ in the light of the previous analysis. 

2. Shea r  S t r e n g t h .  P las t i c  S t ra in  Tensor .  The left-hand side of equality (1.2) is, in essence, the 
initial shear strength, fie., the local yield stress in a given plane in a specified direction. With increase in the 
stress level, which will be characterized by the equivalent tangential stress (1.1), the shear strength increases 
due to increase in the intensity of slidings. It is believed that the shear strength Sit in each of the sliding 
areas Tij depends directly only on the intensity of slidings tit over this area, as was assumed in the simplified 
concept of sliding in [1, 2]. We shall assume that 

Sit = •(Tequiv, Tij) -~- ~(Tequiv, Tij)ril "1- A i j ( 1  - cos j / ) ,  Ai j  = const (2.1) 

for the case of loading with invariable basic directions. Here the direction l in the plane Tij is measured from 
the direction j of the corresponding basic tangential stress. The function of influence of elastic strains ~ is 
expressed by analogy with an isotropic case [2]: 

In this function, the parameter Hij regulates its variation taking into account the fact that a quick (or 
slow) decrease in the function r under monotonic loading leads, respectively, to quick (slow) growth of the 
fan of slidings. The activity of the sliding areas for the zirconium alloy turned out to be different; on the basis 
of the data of proportional loading for the basic acting areas Tij, it can be assumed that 

rIz~ = o, H ,  = 3(1 - ~ / r , ) ,  H~z = 0, rI~r = 4(1 - ~ z / ~ r ) k l l  cos(2~k~). 

The parameter Hii does not influence the initial yield condition: the equality Sij [~ij=0 = rii leads to relation 
(1.2). 

The third term in expression (2.1) shows how much the shear strength would increase with distance 
from the direction of the basic tangential stress; together with the first term, it influences the span of the fan 
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of stidings. The values of the parameters A 0 are taken equal to the doubled ::ormai yield stress which causes 
slidings over the corresponding area Tij. 

The function ~(Tr "rij) determines the type of the material strengthening, being a sort of an analog 
of the cutting modulus. It is convenient to take the difference vii - ~b(rr "rij) as its argument, which gives 

Tij -gr kTequi v "1 cij 
: 1] , Pij, Cij : c o n s t .  ~ ('requiv, vij) Pij Bi j  

After determining the direction of sliding over the areas Tij by the angle/3, using the rule given above, 
we find the intensity of slidings r(fl) =_ riz(# ) from the condition of equality of the shear strength to the 
corresponding tangential stress. Summing the elementary shears over individual areas Tnl, we determine the 
constituents of the plastic strain tensor components in the basic axes (i, j):  

Oij 
1 [ r( )cos2 d  ( i , j  = (2.2) 

= = 5 
_Oi j 

, ]  

Here the indices n, l indicate the area over which slidings at a specific level and type of stress occur, i.e., 
n and l also "run through" the basic directions. 

Adding up components (2.2), we obtain the sought-for deformations: 

i,j 
r i  = ~--~(ri),l (i = z, % r), (2.3) 

n,l 

with allowance for the condition of plastic incompressibility. 
The boundaries of the fan of slidings :l=Oij are determined from the continuity condition for sliding, 

i.e., from the condition r(-4-Oij) = O, which gives 

cos 20ij = [r vii) + dij]/(Tij + Aij). (2.4) 

Thus, formulas (2.2)-(2.4) relate the given stresses to the components of the plastic strain tensor. This 
relation includes, in addition to the material parameters described above, the constants pij and cij. They are 
found by approximating the initial strengthening diagrams, for which we take the axial tension diagram and 
those diagrams of proportional loading which show, by variation of the strain components, when each of the 
sliding areas Tij is first brought into action. 

3. L o a d i n g  T r a j e c t o r y  E x c l u d i n g  t h e  B a u s h i n g e r  Effect .  Let us consider a two-link loading 
trajectory in the space of tensions cr~ ... a~, the first link of which is uniaxial tension. Let us change the 
slope of the second link of the trajectory in order to avoid difficulties caused by the Baushinger effect in 
the computation of the components of the plastic strain tensor in orthogonal additional loading [8]. The 
Baushinger effect will be absent if it is required that during subsequent additional loading no unloading would 
appear in any of the directions of slidings occurring under tension. It is clear from the previous discussion 
that in this particular case the area Tz~ is meant. This requirement will be satisfied if the intensity of slidings 
r-~ in the direction of the basic tangential stress rz~ will not decrease, i.e., if the equality 

r "rz~) + ql(Teq~v, ~'z~)r*~ = T~  (3.1) 

will always be valid in loading on the second link, where r*~ is the intensity of slidings in the indicated 
direction at the moment  of additional loading. 

Removing the parenthesis in the left-hand side of equality (3.1), after some transformations we obtain 
the relation between the current stresses and their values at the moment of additional loading: 

Tz~ + kTequi v : "/';~ -~- kT:quj v. (3.2) 

This equation is the equation of a small curvature line in the space ~z " a~o. In loading along this curve, the 
intensity rzz (l E [-0z~, 0~])  increases in directions different from the direction qo (mean direction in the area 
of slidings), while the value of r ~  remains constant (equal to r ~ ) .  However, in comparison with the previous 
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TABLE 1 

Reference point 
number 

in the experiment 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

a~ �9 9.81 a~, �9 9.81 

MPa 

10.63 0 
17.34 0 
22.48 0 
23.79 0 
26.20 0 
27.90 0 
28.75 1.90 
32.35 9.91 
34.90 15.90 
31.45 7.95 
27.90 0 
30.37 0 
31.39 0 
34.93 0 
36.86 0 

~Z 

% 

0.17 
0.31 
0.49 
0.60 
0.96 
1.28 
1.47 
1.71 
1.79 
1.83 
1.94 
2.05 
2.18 
2.90 
4.10 

0.08 
0.19 
0.30 
0.38 
0.50 
0.72 
0.87 
0.93 
0.93 
1.00 
1.16 
1.22 
1.36 
2.58 
3.67 

tension, the area of slidings increases only slightly right up to the critical tension o'~ r but begins to expand 
* to o 'er the curve (3.2) can be quickly as this critical stress is exceeded. As the tension ~rz is varied from ~r z ~, 

replaced by a straight line with no changes in this peculiarity of propagation of slidings. The second link of 
the loading trajectory was given in just this way. In motion along this link, the Baushinger effect should be 
absent (in accordance with the model), and the increments of the plastic strain tensor components due to the 
slidings over the area Tz~ should be small. It is easy to verify that the slidings over the area Tzr (if it has 
already acted, together with the area Tz~, in axial tension) will cease. This means that the revealed additional 
loading causes an increase in pure shear strain, a factor that should be confirmed or rejected by experiment. 

The experiments were carried out at 0*=28  �9 9.81 MPa, A(rz/a~=0.44 (Crz=Cr* + Aaz) , 
ecr = 35 �9 9.81 MPa. After realization of such a two-link loading trajectory, unloading to the corner point of 
the trajectory was accomplished, followed by repeated loading along rays coming from this point, at the ratio 
Ao'z/O'~ ~ 0.44. The initial experimental data of five samples tested are given (as is strongly recommended 
in [14]), respectively, in the form of Tables 1-5, which were put at our disposal by V. M. Zhigalkin and which 
supplement the previous experiments with zirconium alloy E-110. 

Before comparing the calculated and experimental data, we should note the following fact. In 
accordance with the model, initial loading along the two-link trajectory specified in this way causes monotonic 
deformation, i.e., in any of the directions of slidings their intensity does not decrease, and the Baushinger effect 
does not manifest itself (the two phenomena are interrelated). Therefore, the strengthening diagrams obtained 
after unloading into the corner point of the trajectory in repeated loading should tend to similar diagrams for 
proportional loading, provided that the stressed states in the both cases are of the same type. The results of 
proportional and complex loading are grouped (in samples) with allowance for this expected behavior of the 
material and are presented in Figs. 2 and 3. The trajectories of proportional loading are characterized by the 
ratio ka = cr~/cr~ and the trajectories of complex loading, by kaa = A ~ / ~ .  The calculated diagrams ~.-(ez) 
and cr~(r are shown in Figs. 2 and 3 by dashed lines (first case), solid lines (second case), and dotted lines 
(experimental data). 

The common peculiarity in the behavior of the material in the initial section of the second link of 
the trajectory is as follows: in the initial additional loading the increment rates of the strain components ~z 
and e~, which took place at the earlier moment of axial tension, remain almost unchanged. This is apparently 
due to the lag of the vector properties of the strains. In this case, as with isotropic materials, the lag trace, 
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TABLE 2 

Reference point 

number 

in the experiment 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

~rz �9 9.81 a~, -9.81 

MPa 

12.40 0 
18.22 0 
20.75 0 
22.78 0 
24.55 0 
27.90 0 
29.20 2.90 
34.9O 15.90 
27.90 0 
29.10 0.58 
30.16 1.21 
34.23 3.53 
36.35 4.46 
37.70 5.04 
50.00 6.72 

~z 

% 

0.06 
0.13 
0.20 
0.30 
0.64 
1.22 
1.37 
1.43 
1.56 
1.64 
1.80 
2.58 
3.09 
3.80 
5.20 

TABLE 3 

Reference point 

number 

in the experiment 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

az .9 .81 (%.9.81 

MPa 

13.41 0 
21.50 0 
24.20 0 
27.90 0 
29.60 3.94 
30.90 7.00 
33.50 11.94 
34.90 15.90 
27.90 0 
3O .40 2.50 
35.40 7.50 
36.30 8.46 
40.50 12.64 
43.00 16.12 
45.46 17.57 

•z - - ~  

% 

0.03 
0.16 
0.35 
0.75 
1.04 
1.08 
1.08 
1.08 
1.33 
1.52 
1.70 
1.82 
2.58 
3.84 
4.27 
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TABLE 4 

Reference point 

number 

in the experiment 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

az-9.81 a~-9.81 

19.24 
22.78 
23.84 
25.44 
27.90 
30.10 
34.90 
27.90 
36.50 
37.94 
40.29 
41.25 
41.71 
42.80 
43.27 

MPa 

0 
0 
0 
0 
0 
5.00 

15.90 
0 

27.26 
32.13 
38.51 
41.76 
43.78 
46.57 
48.10 

0.08 
0.15 
0.28 
0.63 
1.17 
1.34 
1.34 
1.48 
1.38 
1.35 
1.24 
1.13 
1.02 
0.64 
0.18 

TABLE 5 

Reference point 

number 

in the experiment 

5 
6 
7 
8 
9 

10 
11 
12 

(rz �9 9.81 r �9 9.81 

MPa 

16.70 0 
20.50 0 
22.27 0 
27.90 0 

�9 29.27 3.12 
34.90 15.90 
27.90 0 
31.70 21.57 
33.17 31.08 
35.45 38.51 
35.45 43.26 
36.68 48.10 

~z 

0.24 
0.37 
0.58 
1.19 
1.54 
1.69 
1.76 
1.75 
1.75 
1.76 
1.77 
1.78 

% 

-0.10 
-0.16 
-0.26 
-0 .63 
-0 .84 
-0 .84 
-0 .95 
-0 .90 
-0.72 
-0.50 
-0 .20 

0.84 
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measured by the length of the second link, is approximately 1/10th of the length of the first link of the tensions' 
trajectory. If the lag trace is not taken into account, the calculated and experimental diagrams az(ez) and 
cr~o(e~) are similar. 

Thus, a pure shear strain (AFz = IAF~I) predicted by the material model proposed for the two-link 
loading trajectory (at a specific angle of deflection) actually takes place in the second link of the trajectory, but 
with some displacement due to the lag property, and with a natural deviation from the equality Arz = ]/kF~] 
in both directions. In repeated ("radial") loading, the predictions of the model were also confirmed: the 
strengthening diagrams for each "ray" tended to similar diagrams for proportional loading, with the same 
type of stressed state in both cases. 

It should be noted that, for four samples, the coefficient kre d [9] for reducing the strengthening diagram 
to the nominal diagram for this material could be taken equal to unity; only for k,xa = 1.9 is ]gred : 1.05. 
Therefore, it is necessary to increase the experimental values of tensions by a factor of 1.05, so that the 
calculated and observed strengthening diagrams can be compared. The corner point of the loading trajectory 
for this sample is appropriately shifted and this is reflected in Fig. 2 as the second "peak" in the calculated 
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diagrams O'z(~z) and cr;(E,~) corresponding to the second law. 
The general conclusion fl'om the results of complex loading is as follows: if the strained state of the 

material under preliminary loading is formed due to slidings over two areas Tij, then, with a change of the 
stressed state and an increase in the level of stresses, the slidings continue only over one of these ar'eas or occur 
in a third similar area. This leads to a vastly greater strengthening of the material in comparison to that in, 
preliminary loading. This strengthening effect can be controlled, as shown by the experiments conducted, by 
means of the orthotropic material model whose basic strength characteristic is shear strength. 
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